- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Tekes, Ayse (2)
-
Tekes, Coskun (2)
-
Estrada, Benji (1)
-
Garcia, Martin (1)
-
Lucier, Elizabeth (1)
-
Nguyen, Tony (1)
-
Ramirez, Ricardo (1)
-
Tran, Kevin (1)
-
Utschig, Tris (1)
-
Utschig, Tristan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Digital controls is a topic often learned through a highly theoretical, almost purely mathematical approach which students struggle to master. Project-based learning is one potentially effective way to address this issue, and hands-on learning as a component of projects can make it even more effective. However, access to equipment for hands-on learning can present significant challenges. To address this issue, we have designed and developed two novel prototypes of hands-on equipment for learning controls that are open-source, inexpensive to produce, and portable. They are suitable for use in undergraduate and graduate-level digital embedded control systems courses. These newly developed devices are a pendulum driven by a dc motor, and a straight-line mechanism consisting of a board, two links, and a dc motor. Control of the devices was used as the primary basis for a class project given to students.more » « less
-
Garcia, Martin; Estrada, Benji; Lucier, Elizabeth; Tekes, Coskun; Utschig, Tris; Tekes, Ayse (, ASME 2021 International Mechanical Engineering Congress and Exposition)Abstract Learning by doing has proven to have numerous advantages over traditionally taught courses in which the instructor teaches the topic while students remain passive learners with little engagement. Although laboratories give hands-on opportunities for undergraduate mechanical engineering students, they have to wait for a semester for the lab course for instance the prerequisite of the vibrations and control laboratory is the mechanical vibrations course. Since the nature of the dynamics branch consisted of dynamics, vibrations, and control theory courses are highly mathematical, students struggle comprehending the introduced topic and relate the theory to its real-world application area. Furthermore, it’s almost impossible for an instructor to bring the existing educational laboratory equipment to the class since they are bulky and heavy. The advents in manufacturing technology such as additive manufacturing bring us more opportunities to build complex systems new materials. This study presents the design, development, and implementation of low-cost, 3D printed vibratory mechanisms to be utilized in mechanical vibrations, control theory courses along with their associated laboratories. A pendulum, cantilever beam integrated with springs, and a rectilinear system consisted of two sliding carts, translational springs, and a scotch yoke mechanism are designed. The main parts of the mechanisms are 3D printed using polylactic acid (PLA), polyethylene terephthalate glycol (PETG), and thermoplastic polyurethane (TPU).more » « less
An official website of the United States government
